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Abstract

actions based on information exchange rather than on atomic elements. Although speculative, the paper is in the spirit
of exploration within a workshop atmosphere. It is enough for us that the interactions be perceived to exist. On this
basis, components become interactors, which signal each other through the exchange of information mediated by some
interaction mechanism. At a minimum, interactions need only be imputed. Consequences for the appropriate definition
of a system parameter based on our position are examined. Possible mathematical avenues are introduced. In the pro-

We take the occasion of the workshop to examine a proposition that systems may be better defined in terms of inter-

cess, a connection with belief systems is explored.
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1. Introduction

In this paper we explore a definition for system
parameters which eventually forces us to the con-
clusion that systems theory in some circumstances
is a subset of information theory. The original
impetus grew out of an attempt to use the concept
of entropy as a basis for suites of system para-
meters. In that earlier work, we had already used
Shannon entropy (H) to express the ability of
systems to recover from damage absent from other
compensating mechanisms.

n
H=- E pi In p; where p; is a probability (1)
i=1
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We explored what was termed casualty based
entropy. In that case, the probability was com-
puted as a ratio of damaged components, which
were therefore removed from the possibility of
interaction, to the total number of interacting
elements present at the start of a time period
(Carvalho-Rodrigues 1989, 1993a,b).

The work made use of the entropy curve of H
versus p, which peaks for values of p around 35%.
Our supposition was that even for values of
damage around 10-20% the steep ascent of the
entropy values signalled major system problems.
In short, systems were more brittle than their com-
ponents. We then asked what was unique about
entropy that permitted it to model systems behav-
jour. We posited the following explanation.
Entropy was crudely measuring the ability of com-
ponents to exchange information through inter-
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actions. Removing or seriously damaging systems
components decreased the system capacity to com-
municate information between components. To
us, this indicated that interactions might be more
fundamental to system properties than com-
ponents,

We were eventually lead to a hypothesis that
properly defined system description parameters
must be resident only in the interactions of the sys-
tems and nowhere localized in the components.
Only in this, albeit extreme, fashion could we
guarantee that the proposed parameters would be
tied to a functioning system. Moreover, they
would unavoidably disappear when the system was
devolved into components.

In subsequent explorations, entropy as the basis
of additional system parameters was sought. To
test this idea we drew up a list of potential, and
perennial, (total) system parameter candidates.
This list included cohesiveness, complexity,
resiliency, redundancy, and reconstitution. The
property of cohesiveness was selected as possibly
being amenable to definition in terms of entropy.
An ‘excess’ of entropy, relative to a standard lack-
ing any special cohesive property, was advanced as
a definition (Carvalho-Rodrigues, 1992). In this
hypothesis, a fuzzy scale of weak to strong
cohesiveness is used in place of absolute numerical
values. We were driven in this exercise by a nagg-
ing suspicion that the usual list for system para-
meters could contain candidates, which might be
manifestations of the same underlying mechanism.
The results of this effort were ambiguous. We
turned next to complexity since complex systems
seemed to also involve the processing of infor-
mation.

Table 1
Some common system concepts

In fact, we were nearly hamstrung in trying to
consistently define complexity. It seemed to exist
in the eye of the beholder. The consequence of this
was startling. It would make the definition of a
system depend on the way in which information
was processed. Special insights into this observa-
tion appear in a discussion of a painting by
Kazimir Malevich called Two Black Squares
(Carvalho—Rodrigues 1994). Rather than contin-
uing an exploration of entropy and system par-
ameters, we elected to re-examine the more
fundamental question of what constituted a
system.,

2. A system is...

Several camps exist as to what a system really is.
For us, the system characterizations listed in Table
1, although incomplete, were useful.

If there 1s a common thread in Table 1, it is that
all entries seem to define a system in terms of its
components, including those dealing in state tran-
sitions (the latter change the state of the com-
ponents). In order to generate an alternative
concept, we took the implications of our definition
of systems parameters quite literally. This pro-
duces a definition based only on the perception of
interactions, not always defined, which operate in
some related fashion. We write this as a map from
a set of interactions X into a defined system S.
Thus,

P: X — S where P is the observer’s perception (2)

Before proceeding to speculate further, let us
examine the implications of using perception. If we
further write,

Name System concept

Algorithm replacement

A system is replaced by a computer model and judgments are referred to the model.

Thus, the system is only as complex as its algorithm.

Input-output model
put with input

Architecture model

Stochastic

State variable

The system is a ‘black box’ whose properties are inferred from a comparison of out-

A system is an ordered configuration of its elemental components
The system executes transitions with no history
A system is defined by transitions between states of its elements
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mS—gq 3)

where ¢ is some observable of the system and if
we identify m with the Dempster-Shaefer belief
measure, we have connected the general definition
of a system to one which embeds the definition of
a ‘belief system’. In belief systems, the truth or
falsity of a proposition ¢ depends on the weight of
information; or, in other words, the available in-
formation. Moreover, based on the work of Joslyn
(1993), we have that m is either a possibility or a
necessity measure if S is a random set. Summariz-
ing, we write m: (P:X) — q.

So that some elementary consequences of the in-
troduction of measures into this treatment can be
considered, we include some basics of fuzzy mea-
sure and belief measures taken from Klir and
Folger (1988). A fuzzy measure assigns to a set X
a degree of membership in the unit interval [0,1].
In the context of belief systems, that membership
is equivalent to our belief that the weight of evi-
dence supports that inclusion. If g is the measure
then it must satisfy the following axioms:

Al g(0)=0and g(X) = 1;
A2.VA,B€ X, A S B — g(4) < g(B)

A3. lim; _ o g(4) = g(lim; _. ,, 4;) where either 4;
c Aj or Aj c Ai’ VI,]

When g satisfies the following additional axiom, it
becomes a belief measure (Bel).

A4. Bel(4; U 4,) = Bel(4,) + Bel(4,) -
Bel(4; N A,) which can be generalized for
i=1,n

Note that when

Bel(4, U 4,) = Bel(4)) + Bel(4,) with 4, N
4,=0

the belief measure becomes the probability mea-
sure. Associated with the belief measure is a dual
called the Plausibility measure defined as
PI(4) = 1 — Bel(4). The following inequalities
hold:

Bel(4) + Bel(4) < 1 and PI(4) + PI(4) = 1

These quantities can also be related to entities
called the ‘Possibility’, and its dual the ‘Necessity’.

What are the implications of these measures for
systems definitions which incorporate the fuzzy
concept of perception as a vital element? A partial
answer is as follows. If two definitions compete,
context will determine when they are possibly
equivalent. One can also accept or reject on the
basis of plausibility or necessity. The same holds
true for weighing the evidence for the existence of
an imputed interaction. It is seen to depend on the
degree of belief.

3. Consequences of perception

With Eq. (2) we commit to a definition of a sys-
tem which depends solely on the way in which in-
formation is processed concerning the set of
defining interactions. As a semantic nicety, we in-
troduce the concept of interactors, by which we
mean those system elements which reveal informa-
tion about the interactions. We must leave open at
this juncture whether or not the interactors are the
same as the standard conception of system com-
ponents. The following four tables introduce some
of the concepts which follow from either our
preoccupation with interactions or our focus on
information. In the tables, we distinguish virtual
systems as those which our current understanding
of the physical world will not support. For exam-
ple, the nightly interactions of Osiris, Isis, and Ra
sufficed as a model of the heavens for the history
of ancient Egypt. Although now recognized as
myth, that system persisted intact for thousands of
years as a complete explanation of the observables.

From Tables 2 and 3 we are able to organize
conflicting views of the same system. (Entries were
somewhat arbitrarily chosen to illustrate our con-
tentions.) In Table 2 for instance, some common
terms used to describe information are listed with
their systems implications. In Table 3, general
statements about interactions are used to infer
aspects of system parameters.

In Table 4 are listed some major system con-
cepts, together with our evolving system explana-
tion as information changes our context for
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Table 2
Some information descriptors

Information related entity

Corresponding statement about the perception of a system

Information base

Processing rate

Information filters

Data or information language
Error correction

Rate of information change,

collection and collation
Sophistication of observer

Screening out noise or extraneous
or non-essential information

Whether or not a system is inferred will depend on the existing knowledge base.
Whether or not the imputed system is virtual or real will depend on the quality of the
base.

The ability to analyze the available information at various rates is predicted to influ-
ence the perceived existence of a system.

The existing cosmology, into which the system must fit, will influence the acceptance of
it as a suitable explanation.

If the language is metaphorical, you will get analogues; if mythic or mystical, you will
get virtual systems; if algorithmic, you will get computer models; etc.

It will determine the resilience to facts.

These determine the ‘half life’ of the system without major changes.

Whether or not the set of interactions is believed to be a system will depend on how
untutored the observer is. An example is found in a case where a forest dweller trades
places with a city dweller.

This determines whether we focus on the ‘right’ interactions, and no others.

understanding. Finally, in Table 5 for classes of
systems we list the evolving interaction archetype
for that class as a growing wealth of information
made improvements possible.

So what can we say about complexity now. The
work of Chaitain (1987) came to mind. For him,
complexity is the number of lines of an algorithm
which describes the computer model of the subject
system. For others, it is sheer number of com-
ponents. Based on entries in Table 3, we would
regard both viewpoints as just two contextual de-

Table 3
Interaction descriptors

pendent manifestations of an informational inter-
action. Basically, we have elected to classify
complexity as a box in an n-axis matrix whose axes
reflect context.

An interesting test arose when we attacked the
problem of creating a system to solve a technical
problem. This required us to first perceive poten-
tial relationships; and then, through the insertion
of interactors, actualize them. Our particular ex-
ample relating fire detection in a forest to speed of
response required just such initial visualization

Interaction statement

Corresponding implication for system parameters

Absolute number of interactions

Number of different, or same,
kinds of interactions

Number of interaction types
affecting an interactor

Number of equivalent interactions

Language of expression for the
interactions

Range of the interaction

Hierarchy of interactions

Existence of ‘spare’ interactions

Probably sets an upper bound on complexity.
Probably affects computation of complexity and redundancy respectfully.

Probably affects the perception of cohesiveness.

Probably affects the computation of resilience and adaptability and also
redundancy.

Related to the question of whether or not the relationships (real or virtual) can
be expressed.

Probably affects the perception of subsystems and system boundaries.

Probably affects the perception of subsystems.

Probably affects ability to repair and reconstitute the system after damage —
implies the existence of stored instructions encoded in the interactions
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Example mega-systems

System example
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System explanation

Solar system

Biological

Evolutionary

Cosmological (time)

Societal

Egyptian

Ptolomey
Copernican/Newtonian
Einsteinian

Earth-air-fire-water
Humours
Space-time-mass-energy
DNA

The Flood
Gilgamesh epic
Darwinian
Ecological
Gaia

Mythic: Navaho, Mayan,
Zuni

Newtonian

Big Bang

Hunter-gatherer
Agricultural

Mercantile
Innovation/industrial
Military/industry
Innovation/service/trade/
industrial

and perception. This latter process imposed the
system on the elements by making them interact
through interactors in the form of sensors, and fu-
sion of sensor data.

Table 5
Sample system interaction drivers

System class Interaction archetype

Communications Paths
Terrestrial roads
Maritime
Aerial
Information highways

Power Muscle
Draft animals
Steam-petrochemicals
Nuclear

4. Similarities

Clearly our examples favor a viewpoint that sys-
tem models evolve with information acquisition.
On this basis, a question of similarity between
equivalent systems descriptions based on informa-
tion can be asked.

As an extreme case, take a mythic view of the
diurnal cycle and a Newtonian model. First, one
can ask what is the similarity between the two sys-
tem models? Then one can ask for the similarity
between each system in a comparative sense; and
between each and objective reality. The immediate
answers are ‘none’, ‘none’, and 100%.

Are there other answers as well? Work by
Dockery and colleagues (Dockery, 1993; Barry,
1994) in the area of modelling an understanding
virtual reality were applied in an exploratory vein.
That work is in turn based on work by Ruspini
(1992) on modal logic and possible worlds.
Ruspini makes use of a similarity measure, which
is a kind of accessibility measure involving
possibility and necessity of the truth of proposi-
tions in accessible worlds. We have already
predicted relations based on possibility and
necessity as a consequence of belief systems.

Possibilities are interesting because they need
not sum to unity. This means that additional possi-
ble hypotheses can be entertained without disturb-
ing existing ones. Necessity N is the dual of P, and
is written as {I — P]. Ruspini’s development pro-
ceeds by asking about the accessibility of worlds in
which all truths are maintained (N), and also
worlds in which at least one truth is maintained
(P). A similarity function is introduced which mea-
sures the ‘stretch’ between the two possible worlds.
We view the difference between two possible
systems in terms of such a stretch. Such thinking
addresses the issue of complexity definitions which
equate complexity with the number of equivalent
definitions. Let us see if Ruspini’s ideas permit
additional similarity comparisons.

Operationally speaking, the mythic system is
probably easier to explain and comprehend, given
the prevailing belief system of the Egyptians; than
the Newtonian view. In fact, the mythic explana-
tion is not complex to a tutored (or untutored)
observer inside the prevailing belief system. Out-
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side that belief system it is another story. The
whole belief system is seen to be highly complex
and at complete odds with our current information
base. Should we re-examine the score? Two
answers are possible depending upon which belief
system you are in. From the mythic side, the result
is 100% (mutual comparison), 100% (mythic reali-
ty), and ‘none’ (Newtonian reality) because one
does not question the ways of a God who happens
to also choose Newtonian mechanics. Starting
from modem side, the score is 100% or ‘none’
depending upon your strict adherence to an opera-
tional viewpoint for the first entry followed by
‘none’ and 100%. Lest the reader reject the conclu-
sion for similarity of 100% between the two think
of the modern day manager who has been heard to
bellow: ‘I don’t care if it works by magic.’

We think our information based approach to
system definition could be useful for understan-
ding how both information was processed and
interactions were perceived in earlier cultures. We
would be operating, as it were, inside an alien
belief system.

What started as investigation of entropy became
a search for a more fundamental understanding of
systems in terms of belief structures. This in turn
allowed us to propose insights into systems
explanations which evolve as information
accumulates.
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