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Abstract: 

 
 Entropy as a measurable quantity, derivable from, combat data, is introduced as 
a global concept by which to express the disorder of combat 
entropy is done using ,historical combat data. Both static tend time series has been 

been employed. The  use of entropy  as a predictor for use in the design of C2 
systems is explored. A state space diagram based on entropy values related to combat 
outcomes is introduced in this regard. Comparison of the entropy computations with the 
results of power spectral analysis of the same data is also introduced. 

 
Background LO the Models Series 

 
The subject of modeling combat with embedded command and control (C2) is being 

systematically developed in a continuing series of papers, which we refer to here as the 
Models Series (1988-90). A wide range of treatments spanning applications of catastrophe 
theory, cellular automata, and system dynamics have already appeared. All contributions to 
the series are threaded with a common conviction that C2 theory can not be developed in the 
abstract, divorced from a description of combat. That conviction is borne out in this paper 
which deals with entropy computations derived from combat data. 
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 Introduction 
 

We have been guided in this series by a number of propositions. Perhaps foremost 
among them has been the assumption that combat is characterized by local chaos and 
long range order. The local chaos is often deliberate as the goal of either combatant is to 
sow disorder while preserving his own structural integrity. We have hypothesized that 
combat with embedded C2 is a self-organizing system with training and discipline 
playing a major role in the aforesaid process. Thus, it is our contention that it is C2 
which serves to give structure to combat. It has been almost a tenant of faith among 
commanders that infliction of casualties reduces the structural cohesion of a force, and 
in turn sows the kind of disorder that presages collapse on the battlefield.  collapse on 
the battlefield. Measurement of that disorder has proven elusive although there is a 
theoretical quantity of such is by definition a measure of disorder. That quantity is 
entropy. 

In this paper we shall explore the consequences for CG of a recent proposal by the senior 
author that entropy, computed from casualty reports is a predictor Combat outcomes 
(Carvalho-Rodrigues, 1989). If this proposition can be substantiated, and we shall seek to 
show from historical data that it can, then entropy should prove a means through which to 
evaluate C2 effectiveness. 1 paving advanced that notion, one turns automatically to the 
possibility that entropy may serve as a predictor when extracted from 3n accumulating time 
series. If entropy has predictive value for C2, then its evaluation can be instrumented from 
incoming reports of casualties. 

 
Our Case will be advanced as follows. We will begin with a necessary review of the 

entropy concept in a number of guises. Then the rather surprising notion is advanced that 
entropy is unifying principle. A Shannon type entropy equation is then tested against selected 
historical data. A case for prediction is advanced. Limited time series casualty data is also 
analyzed with excellent results. Finally, the time series data is also subject to power spectral 
analysis which indicates that the data is primarily from a single wave attack. 

 

 
2 



Models VII: Entropy and C2  Carvalho-Rodrigues, Dockery , and Woodcock 

April 30, 1990 Version 

 Entropy 
 
The Basics 
 

It is our contention that far from being an obscure concept, entropy is a global, and 
measurable, parameter which is particularly appropriate for characterizing systems. In this 
interpretation entropy is considered as basic to the parameterization of systems as is mass to 
the system's physical component. Entropy is a macroscopic or extensive property. On this 
assumption entropy will  tell us something about basic changes in the systems while Ignoring 
details of internal systems interactions. 

Measurement of overall system entropy should be as straightforward as the measurement 
of the mass of components for systems that ha'/e physical components. It is not; perhaps 
because entropy is usually not computed. We note in passing that the general question of 
basic parameters for system characterization we received little attention with the possible 
exception of complexity parameters 1989). What becomes important to us is to pick a form of 
entropy which s appropriate to combat viewed as a system. We would also call attention to 
our investigations into the fractal nature of combat (See Models VI, in tile Models Series). It 
appears possible that data on hierarchical systems fit a hyperbolic rower law. This finding 
leads us to believe that the racial dimension from such a fit may be another example of 
system variable which is insensitive to the details of a particular structure. 

In a theoretical sense the concept of entropy is commonly associated in some fashion 
with the disorder present in a system. One usually encounters entropy for the first, and last 
time, in the study of thermodynamics where it enters in the expression for the second law of 
thermodynamics. In the second law entropy (S) is related to heat (Q) and temperature (T) as 
dQ/T = dS. Maxwell's thermodynamic equations make extensive use of the entropy concept. 
If asked what they remember about entropy, the average engineer would probably answer that 
it keeps growing; and that it is not very useful. That putative conclusion reckons without the 
extension of the entropy concept to information theory by Shannon. He expressed the 
equation for noise in an, information channel as: 
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HS = - p ln p, where p is a probability.   (1) 
 

Unlike the thermodynamic entropy S, the value of HS reaches a maximum and then declines. 
Figure 1 shows this generic behavior. 

Figure , Goes Here--[Graph showing the dependence of Hs on the 
 value of the probability p]. 
 

Relation to Combat 
 
Carvalho-Rodrigues (1989) has exploited the shape of he curie n Figure 1 ;o predict success 

in simulating battle outcomes by relating casualty production to Shannon entropy. His work 
assumes that casualty counts (Ci) can be relates to a provability expression (Ci/Ni), where i 
represents either the Blue or Red force, and where N is the force strength. Rewritten in these 
terms equation 1 becomes: 

 
Hs = (Ci/Ni) ln (1/(Ci/Ni)) (2) 

 
In general we have that Ci = Ci(t), and likewise for Ni. Our main taste in this paper 
will be to test the consequences of equation 2 against historical data. 

What is noteworthy about the curve in Figure 1 is that it passes through a maximum and 
then declines. The peak is about 37% of p = Ci/Ni. Equivalently stated, we find that although 
the casualty production may continue past the peak, the chosen measure of system disorder 
(HS) has passed its maximum. It is as if the 'carrying capacity' of the (combat) system 
described by Equation 1 declines, signifying disintegration of the system itself. Other casualty 
production benchmarks in terms of the peak value are approximately as follows: 

 
10 % at 60% of peak; 20°,6 at 84% of peak; and 255% at 92°,ó of peak. 

 
As discussed by Carvalho-Rodrigues (1989), this kind of general behavior is in accord 

with the expected interaction of combat casualties and the breakup of a fighting force as a 
function of percent casualties sustained. A unit with casualties of 20-30% has endured very 
heavy casualties indeed. If entropy is to be a valid 
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predictor of combat outcomes, then the data should approximate a portion of such a curve as in 
Figure 1. For final outcome statistics only, the results over many battles should be so 
distributed. Time sensitive data should generate only the early portions of such a curve since 
breakdown, and battle termination, will usually occur before the peak of the distribution. 

We may note in passing that for a dissipative system the evolutionary criteria for the 
generation rate for internal entropy production is given as dPi/dt ≤ 0 where Pi = dS/dt 
(Schneider, 1988). In the Models Series we have argued consistently that combat is a 
dissipative system, and in fact a bizarre kind of ecology. Thus it begins to appears only 
reasonable that entropy production should finally emerge as a predictor of combat evolution, 
and hence a major contributor to C2. 

 
Other Facets 

 
Closely related to the Shannon entropy, and a generalization of it, is the Renyl entropy 

expression: 
 
HG = (1/(1-G)) ln (∑I piG) G > 1 (3) 

 
where G is a kind of system, gain coefficient. HG has been computed for chaotic systems. A 
classification scheme for such systems may be related to this property. 

Equation 3 does not exhaust the possible forms that entropy may assume. in the early 
seventies deLuca and Termini (1972) introduced the idea of a ;tizzy entropy in the following 
form 

 
HF =μ(x) + μ (1 - x) (4) 

 
 

where μ is a fuzzy membership function. The consequences for command and control have 
been discussed by Dockery (1982), where a curious property of fuzzy entropy is explored. The 
property in question predicts that past a certain point HF car, only be lowered by reformulating 
the hypothesis for which the fuzzy entropy has been calculated. The consequences for C2 are 
almost obvious. There are predicted to be times when collecting more information about a 
particular 
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hypothesis fails to produce additional clarification! The foregoing suggests that a hypothesis 
about whether a side is winning or losing, based on Shannon entropy and contains fuzzy data, 
must be tempered (adjusted) by the ramifications of Equation 4. The possible formalization of 
such a proposal was not further pursued in preparing this contribution. 

In a recent text Ruelle (1 989) ties the concept of entropy to the currently active topic of 
chaotic evolution in a manner which treats the statistical analysis of time series for 
deterministic non-linear systems. While we do not believe for the moment that combat is 
necessarily deterministic, such aspects have been demonstrated in the attrition process. 
Moreover, we have hypothesized in the Models Series that combat is a chaotic dynamical 
system of great complexity. Ruelle treats the Kolmogrov-Sinai invariant in chaotic dynamics. 
This invariant measures the asymptotic rate of information production, and is identified with 
entropy. Information is created as a system evolves. In our case we have system devolution 
corresponding to the creation of casualties. Connection of entropy with a system invariant is 
in accord with our previous remarks about entropy as a systems' analogue of ,'physical 
parameters like amass. 

Still other connections ;ay be made. In Models V, we have used cellular automata to 
model combat. In that paper, a Manchester equation hypothesis was successfully fit to output 
generated by a series Of automata simulations. Appropriate entropy for cellular automata may 
be defined. Casti (1989) has introduced a 'topological' entropy, which is defined as a measure 
of the likelihood of a particular sequence of cells will be produced when starting from a 
random initial configuration. A companion 'measure' entropy is also introduced to give the 
probability that one of the configuration possibilities under topological entropy will occur. We 
conclude from this that a further formalism may be available for estimating entropy of combat 
when modeled with cellular automata. A discussion of temporal and spatial entropies related 
to the representation of combat as cellular automata has been provided by Woodcock, Cobb, 
and DePace (1989). 

 
 

We turn now to a description of our investigation of combat-related entropy by 
introducing the data sets that we used in our analyses. 
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The Data

Overview 

Computations of Shannon entropy values (HS) were performed on:

• Time independent (or combat outcome) casualty data, which consisted of profile data on 
battles for which the only casualty information consists of a tally of the initial forces and total 
casualties on each side, but not the temporal variations in force strengths during the battle. 

. • Time dependent casualty data, which was obtained from several sources including: the 
historical record; a field exercise and a JAWS simulation of that exercise; and a Lanchester 
equation-based combat simulation. 

Time Independent Combat Cases 

 in order to test the ability of the entropy measure Hi (i=Red and Blue) to predict 
Combat outcomes data derived from a series of historical battles assemble by 
Dupuy for Helmbold of the US Army Concepts Analysis Agency was consulted. 
(Dupuy & HERO, 1986; Helmbold, 1986). Helmbold (1987) has considered the 
question of a link between casualties and victory and was also the source of any 
insightful comments (Helmbold 1989). 

The basic data set contains detailed historical descriptions of some 60 battles from circa 
1600 until circa 1970. Data on straight forward conflict without excessive maneuver, and 
preferably in a single assault or meeting engagement was desired. It was hypothesized that if 
the Hi was a combat outcome predictor then it would have the best chance to manifest itself 
under the least complicated ground combat conditions. Historical battles without complex C2 
were presumed to fit such a description. Therefore, not wishing to introduce additional 
complexity, the following selection criteria were set which yielded 59 battles satisfying these 
criteria: 

• Under 10,000 combatants per side.
• Battles which lasted up to ten hours. 
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The data set gives only the final casualty tallies. The list is presented as Appendix A. A few 
excerpts from this data set are displayed in Table 1. 

 
Table 1: Sample rattles 

The subset favored attackers better than two to one. Three cases that 
resulted in draws were arbitrarily assigned to the nominal defender by a 
ratio of. In summary: 

 

 

The battles by century are shown below with a further breakout for World Wars I and 11. 
The absence of battles from WWII is a consequence of our selection criteria 

 

As records duration of combat we have:
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No further profiting of the data was done. We next discuss the sources of time dependent, or 
time series, casualty data. 
 
Time Dependent Combat Cases 

 
Obtaining time dependent information on casualty production proved to be a more 

difficult task. Cur primary input came from some data released to us by t`-3 National Training 
Center located at Ft. Irwin, California at which military exercises are conducted (Ingber, 1989) 
Laser firings substitute for live ammunition during such simulated exercises Conditions 
strongly favor the attacker, who represents an semi-permanent on-site aggressor force. 

One set of time profiles of casualties in terms of vehicles destroyed were made available 
in 5, 10, and 30 minute intervals. The last set was chosen for the most extensive analysis. 
Smaller time-interval data were used in other, related, analyses. Computations of the 
accumulating value of the entropy filer based on the initial combat conditions. In addition, the 
entropy generated in any 5 and 3 minute interval was !SC Computed. T he latter was to prove 
most illuminating as gave us a more synoptic profile of the mutual attacker arid defense r 
responses. Anticipating results, yet to be introduced, it was observed that the attackers entropy 
rises suddenly as the attack is pressed then must decline rapidly if the attar is to succeed. The 
unsuccessful defense signature, by contrast, is a rising entropy that never falls back to low 
levels signaling defeat. 

Excursions to the basic exercise scenario are generated by running through the JANUS 
simulation, which was originally developed at Lawrence Liver more Laboratories. Six such 
excursions were also provided in five minute time steps. We used these as well but found they 
showed somewhat different properties for the engagement process chiefly in terms of the 
persistence of firings by the defender force after its defeat. 

 
The second sort of time series data came from the use of Operation West Wall conducted 

near Aachen in early 1945. This campaign was directed at the Siegfried Line and was 
characterized by heavy Allied reinforcements during the course of the battle. The data, and 
that for the Inchon campaign discussed below, together with 
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commentary on both campaigns, was graciously supplied to us by Helmbold (1989). Use of 
information from an actual battle introduces several days of data sometimes with the 
additional complexity of reinforcements and maneuver. It is necessary to track the battle for a 
longer time span as the kind of detail available from NTC is not recorded (or recordable) from 
actual engagements. Daily causality figures from the actual battles were converted to entropy 
equivalents. 

The most complex data used was from an campaign lasting some ?0-21 days (Sept 9 to 
Oct 4) after the UN landing at Inchon (North Korea) in 1959 during the Korean war. In this 
case heavy reinforcements characterized the North Korean side but the UN side was 
reinforced as well at day 9-10. Entropy was computed from dally casualty figures talking Into 
account reinforcements during the subject period. 

Our final source of time series casualty data, or rather pseudo data. came from a 
simulation developed especially for this work. basically we generated a time history of ;mutual 
attrition for two sides using Lanchester equations in a manger to be described later on. It was 
anticipated :hat the 'pure' attrition-based Lanchester solution would provide an idealized data 
sample. And, as we shall see, we were not disappointed. 

Analysis Employed 

The Historical Battles 

We computed entropy values Hd and Ha (for defender (d) and attacker (a), respectively) 
using equation 2, but with casualty production normalized to unit time, for all 7-9 battles in the 
data set. This provided what was fundamentally an averaged entropy production rate. 
However, a couple of very short battles gave unexpectedly high entropy rates using this 
technique. 

From the computed entropies the quantity δi = (Hd - Ha) was selected as the predictor of 
the combat outcome. Results were as follows in Table IIa 
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Table: Ha: Results of Normalized Computation of 5i 

 

The results in Table IIa were compared with the hypothesis that the figures could have been 
generated at random. The chi-square was computed with one degree of freedom for a 2x2 
contingency table with a value of χ2 = 25.75.3 By comparison the significance level for 55% 
confidence is 3.84. and for 99% is 5.54 

As we have said the values for Hd or Ha above are based on an entropy which has been 
"normalized" to unit time. The normalization turns into an average rate Of entropy 
production. Results were somewhat less sanguine when δi = (Hd - Ha) was computed from 
un-normalized data. Those results are in the Table IIb are 

Table Ilb: Results of Normalized Computation of δi

 

The chi-square value for Table IIb was χ2 = 16.25 which is still above the 99% level 

In analyzing the data we discovered that real problems with the predictor can arise for 
battles with casualties which go on beyond the 37% stage, which is the peak of the p.ln (1/p) 
curve. This is because the curve is zero at both ends. Thus, an attacking force, which lost but 
a percent or two, but annihilated the defender would incorrectly be predicted as the loser. To 
compensate for this phenomenon 

3. The displays in Tables II are not in the proper form for a contingency test. The rows must be relabeled 
and the numbers in the second row reversed to use the standard chi-square formula.
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We  also computed a f(Hi) (where i=d, a) from the un-normalized area under the curve ire 
Figure 1. Thus 

f(Hi) = Zi =  ∫ p Ln (1/p) dp (4) 
 Zi = (p2 /2) (ln(1/p) + 1/2) 

 
 

Table No depicts these results where the quantity N = (Zd - Za) was computed 
 
 

Table IIc Results of Un-normalized Computation of Δi 

 

 

The chi-square for table IIc was χ2 = 26.03, the best of the three '-v .a small margin. 
Whatever results we get from use of any of the three predictors in Tables II, we are faced 

with the fact that the predictive value of entropy lies to 'he left side Of the peak value of tile 
(p.ln (1/p)) curve. This conclusion will be substantiated in Figures 3 shortly to be introduced. 

It is to be noted that small differences in attacker and defender entropy predominate in 
the normalized case. This can be seen in Figures 2 where histograms both 8i and for -Ai are 
displayed 
 
 

[Figures 2 Go Here--Histograms of the quantity (Hd - Ha) or (Zd - Za)] 
 
 

The predictions were better for battles past about 1850. Some of the early data reflected 
selections from the Wilderness Campaign on the then US frontier. Three bad predictions 
come from data of single year, 1781. A talk with Helmbold suggests that these particular sets 
of data may be unreliable. 
 

All 59 values of un-normalized Hi were plotted as a function of Ci/Ni (Figures 3). While 
it is not remarkable that the points fall along the line (because Hi is 
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derived from Ci/Ni), their distribution is remarkable. For the attacker in Figure 3a nearly all 
points fall between zero and 0.4; or about where conventional wisdom predicts that the loser 
ceases to be a fighting force. For the defender in Figure 3b the story is told by the number of 
points past the peak. 

[Figure, Go Here--Scatter plots of un-normalized Hi versus (Ci/Ni) with 
 (i=a,d)] 

We now turn to a consideration of the time series data which is expected ;o be more 
sensitive to the hypothesis that entropy is a combat outcome predictor. It Is also the data from 
which we could hope to extract a C2 predictor. 
 
The NTC Exercises 

 
The time series information from the NTC and JANUS simulations thereof was 

analyzed in two ways. First, a normalized cumulative entropy calculation was 
per formed in which the original number of attackers and defenders were used as 
the numerator in equation 2 for all incremental time periods, tj. Second, the entropy 
was computed for each successive time period using for Ni the remaining force 
strength at tj, which was divided into the casualties generated between ti and tj+1 

Figures 4 arid 5 summarize the NTC data. They each epics plots consisting of Ha and Hd 
versus time, and the two entropies versus each other for cumulative and time interval 
sensitive computations, respectively. 

[Figures 4 Go Here plots of Hd, Ha, and their difference versus time; 
and also Hd versus Ha where both are for the cumulative entropy Morn 

 the NTC data set] 
 

[Figures 5 Go Here--Plots of Hd, Ha, and their difference versus time; and also Hd versus 
Ha where both are for the time sensitive entropy from the NTC data set; 

 
The most striking feature of the preceding plots is to be found in Figure 5a, which is 

interval data, where at time 330 the attacker's entropy rises suddenly and 
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then falls. In Figure 4a the total entropy comparisons tell the same tale. These results can be 
interpreted as the attacker taking the initiative, and associated risk. The risk pays off for the 
attacker's time interval entropy again declines whsle that of the defender remains high. 
Figures 4b and 5b show the clear evidence of a win by the attacker as the trajectory in Figure 
4b hooks back after the initiative is taken. Points have been numbered in time ordered 
sequence. Plots of entropy versus entropy have been arbitrarily normalized to the peak of cure 
in equation 1 by dividing by 0.37. 

We may generalize the results from the Hd versus Ha plots by looking a; the different 
notional trajectories for the arrow of time in Figures 6, 

 
(Figures 6 Go Here--Arrows of Time] 

 
Figures 4b and 5b are not in disagreement with Figures 6. 

 
For comparison three JANUS excursions arbitrarily numbered one, three, and six were 

selected. In One case ;six) the defender is the clear winner. Shown for each instance are plots 
^f entropy versus times for both cumulative and time interval cases. For case one both 
cumulative and time interval plots of entropic space (Hd versus H3 ) are included. For the 
other two only the cumulative results are displayed 

 
[Figures 7 Go Here—JANUS simulations of the data already presented in Figures 4 and 6] 

 
Other JANUS runs showed more complex behavior with ail exhibiting a persistence of 

the engagement beyond normal break off. Such behavior may be caused by the absence of a 
set of computer routines which trigger force separation under combat termination conditions. 

Additional searches for a signature that a side was winning or losing based on entropy 
were also performed. In Figure 8, for example, we show a three dimensional scatter plot of 
entropy for attack and defense versus time for N T C/30 minute data and for JANUS 4 
produced with the aid of a computer routine that 
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rotates multi-dimensional data. The orientations of the three axes result from experimenting 
with rotations that would separate the points in a three-dimensional prciection. Additional use 
of this program produced the results displayed later in 

gores 11. 
[Figure 8 Goes Here--Three dimensional depiction of the relative entropies versus time for 

the NTC/30 minute and JANUS 4 runs. Both are cumulative results.] 
 

West Wall and Inchon Data 
 

These two campaigns which lasted about one and three weeks respectively and were 
characterized by troops concentrations numbering 20,000 to 50,000 men per side, were a 
sharp departure from the very controlled combat examples just introduced. Entropy was 
calculated on a daily basis using reinforced figures when appropriate. Three dimensional 
plots of Hd versus Ha versus time are introduced because of the greater complexity to the 
trajectories in entropic space. 

 
[Fig 9 Go Here--Time plot of West Wall by daily interval entropic space plot 
showing numbered, time ordered points] 

[Figures 10 Go Here--Time plot of Inchon Operation by daily interval and 
also entropic space plot showing time ordered points 

[Figure 11 Goes Here--Three Dimensional plots of West Wall and Inchon] 
 
History records the Allies as victors in West Wall and for the Inchon action as well. How 

well do our predictions bear up? Both time and entropic battle space plots for West Wall 
show a victor after some undecided early, and un-reinforced, action. In fact the process 
appeared from the data to be accelerating at the end. As yet we have no way to measure the 
velocity or acceleration in the production of entropy but it appears that it would be a very 
sensitive indicator of which way the battle was headed. It would also accord well with earlier 
comments on dissipative systems as evolutionary systems. Although we have no data the time 
derivative of entropy dHi/dt yields the following results where both reinforcement and 
casualties 
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are considered as functions of Lime (actually a difference equation might be more appropriate 
here, but was not used). 

 
dH i/dt = (CiNi - CiNi )/Ni2 [1n (1/(Ci/Ni)) - 1] (5) 

 
Examination of equation (5) shows that the sign of the entropy production will indeed depend 
critically on the reinforcement rate (dNi/dt) which represents flora across the boundary of a 
dissipative system. 

For Inchon data the key element is found in the daily changes In entropy With time. The 
defender's (NK) entropy remains clearly above that of the attacker (US). Interpretation of the 
plot of entropies versus each other shows no clear pattern. This actual combat data admixes 
lulls in the fighting and periods of reinforcements on both sides. For instance, the UN force 
was reinforced on day 9, and a link-up of forces occurred on day 13. This may help to explain 
the clusters of points which seem to indicate two phases of activity. Military records indicate 
three phases. This is seen more clearly in the 3D plot in Figure 11. In Figure 11, days 9 and 
13 could be read as the last day in clusters (phases) l and 2. Comparison with the historical 
record would seem to substantiate this finding although the clustering is not so apparent from 
the original data. 

 
Another Lock 

 
In Dockery and Woodcock (1989) we discussed the use of entropy rut forward by 

Jumarie (1986) in an application called relativistic information theory. That work borrowed 
from this paper, which was then in progress, and reported on the use of a systems dynamics 
package called STELLA. A STELLA model employing Lanchester equations can be used to 
generate attrition figures from which Hi can be computed. The reader is assumed to be 
familiar with these equations which may be written in a general form as 

 
dx/dt = -a1.y -b1.xy + c1 and dy/dt = -a2x -b2xy +c2   (6) 

 
where the conventional interpretation is that at, represents aimed fire, bi represents area fire, 
and ci represents reinforcements. 
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We began with a highly stylized scenario (A) which used only aimed fire with equal 
initial combatants (1000) on either side. Respective attrition rates were a1 = 0.25 and a2 = 
0.10 per time step with b = c= 0 for both sides. Casualty production is depicted in Figure 12a. 
The trajectory of points in entropy space shown in figure 12b were obtained. Comparing with 
the results from NTC and actual combat we see that this simulation, while generating a 
classical curve peaking at 0.37 is also too intense. The latter is a long standing criticism of 
Lanchester equations; and it appears well founded. It would also explain why deterministic 
Lanchester equations almost never fit real data. 

 
[Figure 12 Goes Here--Plot of trajectory in entropic battle space for 

simple scenario A. together with casualties with time.] 
 
The second scenario (B) was slightly more complex. For values of he attrition 

coefficients a; = 0.2 and a2 = 0.1, we took unequal initial combatants of x =3C°0 and y =1000. 
Since our actual combat data involves reinforcement we also reinforced side x with 100 per 
unit time with the results in Figures 13. Despite the greatly unequal attrition coefficients, the 
reinforced side wins. T he reversal :of fortunes is evident in Figure 13b. 

 
 [Figures 13 Go Here--Plot of entropies and casualties with time for scenario B where side x 
is reinforced continually but wins eventually. Note that the time advances toward the more 

dense sets of points, ie. darker line] 
 

Finally in scenario (C) we added area fire to produce the results presented in Figures 14. 
The initial force strengths were unequal being x=1500 and y =1000. For side x the value of al 
was constant at 0.15 while for y the values of a2 are 0.1 for t < 2.5 rising to 0.3 for 0.5 time 
units and then declining to 0.05 after t = 3.0. The x force is subject to area fire between t=2.0 
and t=2.5 time units with a value of b1 = 0.001 with b2 = c = 0. 

 
 

[Figures 14 Go Here--Suite showing scenario C including casualties with time, 
cumulative attritions and entropy space.] 
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The effect of the area fire is to reverse the tide of battle in favor of side y as seen in Figure 
14b. Cumulative attrition plots in 14c and 14d show that even for the victor, the Lanchester 
Equation battle goes well beyond the peak of the -p In p curve. 

The results of the three STELLA based simulations using Lanchester equations are 
clearly in accord with our contention that entropy is a predictor of victory and where the 
reversals due to additional influences are clearly -seen. 

 
A Unifying Interpretation 

 
The use of an entropic state space diagram whose axes are Ha and Hd is proposed. 

Entropy maps the arrow of time so earlier, in Figures 6 we introduced the possible trajectories 
of this arrow in the State space. 'vile had depicted trajectories corresponding to respective 
winning paths for attack and defense with the understanding that an actual battle, in which 
one side or the other does not totally predominate, will show features of both. 

 We choose now to divide the state space into four regions (I-IV) as shown in Figure 15 
Note that the space i's of necessity normalized along each axis to 1/0.37 of the value of the 
entropy, which we remind the reader is the maximum, of the entropy curve. 
 

[figure 1 5 Goes Here--Entropic State Space for Battle Outcomes] 
 

The regions correspond to possible battle outcomes which are summarized as follows: 
 

• Region 1: A region of low entropy production corresponding to low 
casualties and ambiguous outcomes or no outcome at all. Initial phases of the 
battle pass through this region with potential success depending upon the 
details of the trajectories as indicated for the figure showing the arrows) of 
time. 
• Region Il: Here the high values for entropy of the defender coupled with low 
entropy for the defender indicate that the attacker wins. 
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• Region III: Like Region I, this is a region with ambiguous outcomes perhaps 
representing the high attrition part of a battle with outcomes dependent on the 
direction the trajectory turns toward (I or IV). Only simulated combat seem to 
reach this region 
• Region IV: The analogue of Region II. Here the entropy production roles are 
reversed and the defense wins. 
 

Power Spectra 
 

Recently Woodcock has investigated the possibility of applying time series analysis to 
combat interactions. [Woodcock, 1990]. In particular he has generated power spectra. The 
self-same technique was applied to the NTC casualty data treated as a time series signal with 
the results shown in figures 16. 

[Figures 16 Go Here--Power Spectral Analysis of NTC 101 minute interval data for 
Red and blue. The top curve is a normalized plot of the data in the time domain and below 
the corresponding frequency domain normalized to frequency with the highest power 
contribution to the signal.] 

 
Although the density of points is marginal for this kind of analysis, Figures 16 do show a 

main peak which we interpret to mean ;hat the Red attack basically came in. a single wave. 
This is in accord with field observations. The Blue defense appears to have one (or two) 
higher frequency cycles indicating more than one mode of response to the attack. The 
foregoing appears to verify that the entropy predictions done with this data are uncomplicated 
by multiple thrusts so that the engagement can be regarded as single attack. 

 
 

When the analysis was extended to the six JANUS simulations five 0f six Red attack 
simulations showed a single peak on the attack. Blue simulation responses in all cases were 
less complex than the actual field data. For comparison we display in Figures 17 the results 
for JANUS 4 and JANUS 6 as being typical of the power spectra from the simulations. Five 
minute simulations intervals yielded 16 useable time intervals. 
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[Figures 17 Go Here--Power spectra transform (bottom) and associated 
time domain plots (top) for JANUS 4 and JANUS 6] 

 
A next step in using an entropy predictor based on casualty data would be to analyze an 

engagement with different maneuver and rates of advance. Simulated information of this sort 
should be possibly emerging from work of Protopopescu et al. on modeling heterogeneous 
combat with partial differential equations as this output has been shown to match JANUS 
data as well (Protopopescu et al., 1988, 89). 

In another approach to extracting information from time series data, an attempt was made to 
look for evidence of an attractor by attempting to generate a possible Poincare section with a 
method discussed by Stewart (1989). The technique involves plotting a time series against itself 
shifted by one or two time steps. We experimented with an alternative form which is the 
incremental Red casualty goes versus the time shifted Blue figures in a scatter plot. There are 
too few data points to draw any conclusion so that the equivalent figures for Red and Blue 
entropy were no attempted. 

 
Implications for C2 

 
Because casualties and casualty rates can be measured from observables t. production of 
entropy based on these figures can be instrumented. Since destruction of infra-structure and 
materiel also contribute to the breakdown of the inherent c cohesive structure required of a 
fighting force, it should also be possible to measure that destruction in entropic terms. Since 
casualty data can be not notoriously uncertain, the .hypotheses about progress of the battle 
should be cast in entropic terms as well. The fuzzy entropy of deLuca and Termini (1972) 
already introduced is suggested as a starting point. 

 
The rate of entropy production is also singled out as another G2 indicator. In fact the 

coupled casualty and reinforcement rate are really what are at issue. Measurement and 
display of both seem close to parameterizing something which is variously described as the 
"tempo" of battle. The tempo is then seen to characterize 
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not the physical rate of advance (the usual connection) but rather the rate of structural 
breakdown of the fighting force. 

It also seems plausible to articulate a class of entropy based planning factors to govern 
the development and time line of either attack or defense. It may be that the "classical" 
notions oz requirements for numerical superiority of the attacker at numbers like two and 
three `o one may be related to entropy production. We would venture that these ratios are 
intended to permit the attacker to sustain high transient entropy production rates in order to 
gain, and hold, the initiative while still relying on a dynamic structure. The defender on the 
other hand, usually car, count on more fixed infrastructure, and so would have different 
entropy based planning factors. 

 
Summary 

 
We believe we have demonstrated from the limited data available to us that the 

hypothesis concerning casualty production as a predictor of combat is verified from both time 
series analysis: and also the historical record cased on final casualty counts. Moreover, 
casualty based entropy emerges as a major indicator for the design of future C2 systems. 
Entropy is shown to have weep theoretical significance for future analysis of combat as a 
dissipative system and for the eventual identification of attractors in combat through time 
series analysis. 
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Figure 1. Graph showing the dependence of Hs on the value of the probability p. 
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Figure 7.1d Plot of time sensitive interval data from JANUS 1 simulation data of NTC 
for attacker and de-fender sewing trajectory in entropic battle space. 
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Figure 13.a: Casualty production with time for STELLA used scenario B. Unequal
initial combatants and unequal attrition coefficients (respectively a1 and a2 are 0.2 and 
0.1), but side x is continually reinforced at 100 units per time and eventually wins. 
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