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Entropy as a measurable quantity, derivable from combat data, is introduced as a global concept by 
which to express the disorder of combat. Computation of entropy is performed with historical combat 
data Both static and time series data has been employed The use of entropy as a predictor for use in 
the design of command and control systems is explored. A state space diagram based on entropy 
values related to combat outcomes is introduced in this regard. Comparison of the entropy 
computations with the results of power spectral analysis of the same data is also introduced. These 
studies are based on a common conviction that command and control theory cannot be developed in 
the abstract,. divorced from a description of combat itself. That conviction is borne out in this chapter 
which deals with entropy computations derived from actual combat data. 
 

Entropy Measures Provide the Basis for 
Assessing the Level of Combat Chaos 
 
We have been guided in our studies of combat with embedded command and control by a number of 
propositions- Perhaps foremost among them has been the assumption that combat is characterized by 
local chaos and long range order. The local chaos is often deliberate as the goal of either combatant is 
to sow disorder while preserving his own structural integrity. We have hypothesized that combat with 
embedded command and control is a self-organizing system with training and discipline playing a 
major role in the aforesaid process. Thus, it is our contention that it is command and control which 
serves to give structure to combat. It has been almost a tenant of faith among commanders that 
infliction of casualties reduces the structural cohesion of a force, and in turn sows the kind of disorder 
that presages collapse on the battlefield. Measurement of that disorder has 
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proven elusive although there is a theoretical quantity which is by definition a measure of disorder. 
That quantity is entropy. 

In this chapter we shall explore the consequences for command and control of a recent proposal 
by Carvalho-Rodrigues (1989) that entropy, computed from casualty reports, can serve as a predictor 
of combat outcomes- A report of our investigation of such a possibility has been presented at a 
recent conference (Carvalho-Rodrigues, Dockery; and Woodcock, 1991). If this proposition can be 
substantiated, and we shall seek to show from historical data that it can, then entropy should prove a 
means through which to evaluate command and control effectivenessHaving advanced that notion, 
one turns automatically to the possibility that entropy may serve as a predictor when extracted from 
an accumulating time series. For if entropy has predictive value for command and control, then its 
evaluation can be instrumented from incoming reports of battlefield casualties. 

Our case will be advanced as follows. We will begin with a necessary review of the entropy 
concept in a number of guises- Then the rather surprising notion is advanced that entropy is a 
unifying principle- A Shannon-type entropy equation is then tested against selected historical data as 
well as data derived from combat simulations and mathematical models of combat based on the 
Lanchester Equations. A case for the successful prediction of combat outcomes is then advanced. 
Finally, time series simulation data is subjected to power spectral analysis which indicates that the data 
is presumably from a single wave attack. 
ENTROPY IS A GLOBAL MEASURABLE PARAMETER 
It is our contention that far from being an obscure concept, entropy is a global, and measurable, 
parameter which is particularly appropriate for characterizing systems. In this interpretation entropy is 
considered as basic to the parameterization of systems as is mass to the system's physical components. 
Entropy is a macroscopic or extensive property. On this assumption entropy will tell us something 
about basic changes in the systems while ignoring details of internal systems interactions. 
Measurement of overall system entropy should be as straightforward as the measurement of the mass 
of components for physical systems. It is not; perhaps because entropy is usually not computed- We 
note in passing that the general question of basic parameters for system characterization has received 
little attention with the possible exception of complexity parameters (Cacti, 1989)_ What becomes 
important to us is to pick a form of entropy which is appropriate to combat viewed as an overall 
system. 

 
In a theoretical sense the concept of entropy is commonly associated in some fashion with the 

disorder present in a system- One usually encounters entropy for the first, and last time, in the study of 
thermodynamics where it enters in the expression for the second law of thermodynamics In the second 
law entropy (S) is related to heat (Q) and temperature (T) as dQ/T = dS. Maxwell's thermodynamic 
equations make extensive use of the entropy concept. If asked what they remember about entropy, the 
average engineer would probably answer that it keeps growing; and that it is not very useful. That 
putative conclusion reckons without the extension of the entropy concept to information theory by 
Shannon (1963). He expressed the equation for noise in an information channel as: 
 

HS -_plnp  (1) 
 
where p is a probability. Unlike the thermodynamic entropy S, the value of HS reaches a maximum and 
then declines, as illustrated in Figure 1. 
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Figure 1: The dependence of the value of the Shannon Entropy HS on the 
value of the probability (p) in equation (1).

RELATIONSHIP OF SHANNON ENTROPY TO COMBAT
Carvalho-Rodrigues (1989) has exploited the shape of the curve in Figure 1 to predict 
success in simulating battle outcomes by relating casualty production to Shannon entropy 
values. His work assumes that casualty counts (Ci) can be related to a probability 
expression (Ci/Ni), where i represents either of the adversarial (arbitrarily labelled Blue or 
Red) forces, and where N is the force strength. Rewritten in these terms, equation (1) 
becomes: 

HS = (Ci/Ni) In (1/(Ci/Ni)) (2)

In general we have that Ci = Ci(t), and likewise for N¡. Our main task in this chapter will 
be to test the consequences of equation (2) against actual historical combat data 

What is noteworthy about the curve in Figure 1 is that it passes through a maximum 
and then declines. The peak is about 37'0 of p = C^. Equivalently stated, we find that 
although the casualty production may continue past the peak, the chosen measure of 
system disorder (HS) has passed its maximum It is as if the combat capability of the system 
described by equation (1) declines, signifying disintegration of the system itself. Other 
casualty production benchmarks in terms of the peak value of the curve in Figure I are 
approximately the following: 

10 % AT 60% OF PEAK; 20% AT 84% OF PEAK; AND 25% AT 92%'o OF PEAK. 

As discussed by Carvalho-Rodrigues, this kind of general behavior is in accord with 
the expected interaction of combat casualties and the breakup of a fighting force as a 
function of percent casualties sustained. A military unit with casualties of 20-30% has 
endured very heavy casualties indeed. If entropy is to be a valid predictor of combat 
outcomes, then the data should approximate a portion of such a curve as in Figure 1. For 
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f-final outcome statistics only, the results over many battles should be so distributed. Timesensiãve 
data should generate only the early portions of such a curve since breakdown, end battle termination, 
will usually occur before the peak of the distribution. 

We may note in passing that, for a dissipative system, the evolutionary criteria for the rate of 
generation of internal entropy production is given by the expression: dPi/dt <_ G where P, = dSi/dt 
(Schneider, 1988). In our investigations of combat with embedded command and control, we have 
argued consistently that combat is a dissipative system, and ìn fact may even be considered to behave 
as a bizarre form of ecology. Thus it begins to appears only reasonable that entropy production should 
finally emerge as a predictor of combat evolution, and hence a major contributor to support the 
command and control of combat. 
OTHER ENTROPY MEASURES EXIST 
Closely related to the Shannon entropy, and a generalization of it, is the following Renyi entropy 
expression (HG): 

HG = (1/(1-G)) In (1i PiG) G > 1  (3) 
where G is a kind of system gain coefficient- HG has been computed for chaotic systems. A 
classification scheme for such systems may be related to this property 

Equation (3) does not exhaust the possible expressions for entropy. The concept of a fuzzy 
entropy (HF), expressed in the following form has been introduced by deLuca and Termini 
(1972) HF = h(x) + 11(1 - x)  (4) 

where V is a fuzzy membership function- The consequences for command and control have been 
discussed by Dockery (1982), where a curious property of fuzzy entropy is explored. 

The property in question predicts that past a certain point HF can only be lowered by 
reformulating the hypothesis for which the fuzzy entropy has been calculated. The consequences for 
command and control are almost obvious. There are predicted to be times when collecting more 
information about a particular hypothesis fails to produce additional clarification! The foregoing 
suggests that a hypothesis about whether a side is winning or losing, based on Shannon entropy and 
containing fuzzy data, must be modified by the implications of equation (4). 

 
In a recent text Ruelle (1989) ties the concept of entropy to the currently active topic o1 chaotic 

evolution in a manner which treats the statistical analysis of time series for deterministic non-linear 
systems. While we do not believe for the moment that combat is necessarily deterministic, such 
properties may be associated with individual attrition processes. Moreover, we have suggested in our 
analysis of combat with embedded command and control that combat is a chaotic dynamical system of 
great complexity Ruelle treats the Kolmogrov-Sinai invariant in chaotic dynamics. This invariant 
measure the asymptotic rate of information production, and is identified with entropy. Information is 
created as a system evolves. In our case we have system devolution corresponding to the creation of 
casualties. Connection of entropy with a system invariant is in accord with our previous remarks about 
entropy as an analogue for a combat system of the physical parameters like mass associated with 
physical systems. 
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 Still other connections may be made. We have used cellular automata to model combat and have 
successfully fitted a Lanchester equation model to the data generated by a series of automata 
simulations. Appropriate entropy values for such cellular automata-generated data may be defined, and 
this is the subject of on-going investigations. Casti (1989) has introduced a "topological" entropy, 
which is defined as a measure of the likelihood of a particular sequence of cells will be produced when 
starting from a random initial configuration. A companion "measure" entropy is also introduced to 
give the probability that one of the configuration possibilities available under topological entropy will 
actually occur- We conclude from this that a further formalism may be available for estimating entropy 
of combat when modeled with cellular automata A discussion of spatial and temporal entropies related 
to the representation of combat entities as cellular automata has been provided by Woodcock, Cobb, 
and DePace (1989). 

Combat-Related Casualty Data
We turn now to a description of our investigation of combat-related entropy by introducing the data 
sets that we used in our analyses. Computations of values of the Shannon entropy (HS) were 
performed on the following types of combat-related data: 

• Time-independent (or combat outcome) casualty data, which consisted of profile 
data on battles for which the only casualty information consists of a tally of the initial 
forces and total casualties on each side, but not the temporal variations in force 
strengths during the battle. 

• Time-dependent casualty data, which was obtained from several sources including: 
the historical record; a field exercise and a JANUS simulation of that exercise; and a 
Lanchester equation-based combat simulation 

TIME INDEPENDENT COMBAT OUTCOME 

We have used data derived from a series of historical battles that has been assembled by Dupuy for 
Helmbold of the US Army Concepts Analysis Agency (Dupuy and HERO, 1986; Helmbold, 1986) in 
order to test the ability of the Shannon entropy measure (HS) to predict combat outcomes. HeImbold 
(1987) has considered the question of a link between casualties and victory and was also the source of 
many insightful comments during our investigations (Helmbold, 1989). 

The basic data set contains detailed historical descriptions of some 601 battles from circa 1600 
until circa 1970. Data on straight forward conflict without excessive maneuver, and preferably in a 
single assault or meeting engagement was desired It was hypothesized that if the HS for the adversarial 
forces was a combat outcome predictor then it would probably have the best chance to manifest itself 
under the least complicated ground combat conditions- Historical battles without complex command 
and control were presumed to fit such a description. Therefore, not wishing to introduce additional 
complexity, the following selection criteria were set which yielded 59 battles satisfying the following 
criteria: 

Under 10,000 combatants per side. 
Battles which lasted up to ten hours. 

The data set gives only the final casualty tallies. The list is presented in Appendix A. A few selections 
from this data set are displayed in Table 1. 
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This data subset consisted of results in which the attackers were favored by a ratio of better than two 
to one. Three cases that resulted in draws were arbitrarily assigned to the nominal defender. In 
summary= 

 

The battles are shown identified by century below with a further breakout for World Wars I and II. 
The essential absence of battles from WWII is a consequence of our selection criteria 

The duration of combat activities fell within the following ranges for the sample data set: 

No further profiling of these actual historical combat data was undertaken during our studyWe will 
now discuss the sources of time-dependent casualty data 
TIME DEPENDENT COMBAT-RELATED DATA 
Obtaining time dependent information on casualty production proved to be a more elusive task. Our 
primary input came from some data released to us by the National Training Center (NTC) located at 
Fort Irwin, California, at which military exercises are conducted (Ingber, 1989). Laser firings substitute 
for live ammunition during such simulated exercises- Conditions strongly favor the attacker, who 
represents a semi-permanent on-site aggressor force 
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One set of time profiles of casualties in terms of vehicles destroyed were made available in 5, 10, 

and 30 minute intervals. The last set was chosen for the most extensive analysis. Smaller time-interval 
data sets were used in other related analyses. Computations of the accumulating value of the entropy 
were based on the initial combat conditions. In addition, the entropy generated in any 5 and 30 
minute interval was also computed- The latter was to prove most illuminating as it gave us a more 
synoptic profile of the mutual attacker and defense responses. Anticipating results, yet to be 
introduced, it was observed that the attacker's entropy rises suddenly as the attack is pressed then 
must decline rapidly if the attack is to succeed. The unsuccessful defense signature, by contrast, is a 
rising entropy that never falls back to low levels signalling defeat. 

Excursions to the basic exercise scenario are generated by running through the JANUS 
simulation, which was originally developed at Lawrence Livermore Laboratories. Six such excursions 
were also provided in five minute time steps- We used these as well but found they showed somewhat 
different properties for the engagement process chiefly in terms of the persistence of firings by the 
defender force after its defeat. 

The second sort of time series data came from the actual combat activities associated with 
Operation West Wall that took place near Aachen in early 1945. This campaign was directed at the 
Siegfried Line and was characterized by heavy Allied reinforcements during the course of the battle-
The data, and that for the Inchon campaign discussed below, together with commentary on both 
campaigns, was graciously supplied to us by Helmbold (1989). Use of information from an actual 
battle introduces several davs of data sometimes with the additional complexity of reinforcements and 
maneuver It is necessary to track the battle for a longer time span as the kind of detail available from 
NTC is not recorded (or recordable) from actual engagements- Daily causality figures from the actual 
battles were converted to entropy equivalents. 

The most complex data used was from a campaign lasting some 20-21 days (September y to 
October 4) after the United Nations landing at Inchon (North Korea) in 1950 during the Korean war-
In this case heavy reinforcements characterized the North Korean side, but the United Nations side 
was reinforced as well at day 9-10 of the campaign. Entropy was computed from daily casualty figures 
taking into account reinforcements during the subject period. 

 
Our final source of time-series casualty data, or rather pseudo-data, came from a simulation 

developed especially for this work- Basically we generated a time history of mutual attrition for two 
sides using Lanchester equations in a manner to be described later on. It was anticipated that the "pure" 
attrition-based Lanchester solution would provide an idealized data sample. And, as we shall see, we 
were not disappointed 
 
The Analysis of Combat-Derived Data 
HISTORICAL BATTLES 
 
We computed entropy values Hd and Ha (for defender (d) and attacker (a), respectively) using equation 
(2), but with casualty production normalized to unit time, for all 59 battles in the data setThis provided 
what was fundamentally an averaged entropy production rate However, a couple of very short battles 
gave anomalously high entropy rates using this technique 
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From the computed entropies the quantity ô; _ (Hd - Ha) was selected as the predictor of the 
combat outcome. Results were as follows in Table 2a: 

 

 

The results in Table 2a were compared with the hypothesis that the figures could have been generated 
at random. The X2 value was computed with one degree of freedom for a 2x2 contingency table with 
a value of X2 = 25.75. (It should be noted that the displays in Tables 2a and 2b are not in the proper 
form for a contingency test. The rows must be relabeled and the numbers in the second row reversed 
to use the standard X2 formula.) By comparison the significance level for 95% confidence is 3.84 and 
for 99% confidence level is 6.64 

 
As we have said the values for Hd or Ha above are based on an entropy which has been 

"normalized" to unit time. This is equivalent to some kind of average entropy production. Results were 
somewhat less sanguine when the parameter &i' = (Hd - Ha) was computed from un-normalized 
entropy data. The results of this investigation are presented in Table 2b: 

 

The X2 value for Table 2b was X2 = 16.25 which is still above the 99% confidence level. 
 

In analyzing the data we discovered that real problems with the predictor can arise for battles with 
casualties which go on beyond the 37% stage, which is the peak of the curve generated by the 
relationship (- p In p). This is because the curve has zero values at both ends- Thus, an attacking force, 
which lost but a percent or two of its force, but annihilated the defender would incorrectly be predicted 
as the loser. To compensate for this phenomenon we also computed a function f(Hi) (where the 
coefficient (i) represents (d) and (a), the defender and attacker, respectively) from the un-normalized 
area under the curve in Figure 1. Thus: 
 

f(Hi ) = Z; = fp In (1/p) dp = (p2 /2) (In (I /p) + 1/2)  (4) 
 
 
Table 2c depicts these results for the quantity of = (Zd - Za): 



Table 2c Results of un-normalized computation of Ai  

 

The XZ for Table 2c was X2 = 26.03, the best of the three values by a small margin. 
Whatever results we get from use of any of the three predictors in Tables 2a, 2b, and 2c, we are 

faced with the fact that the predictive value of entropy lies to the left side of the peak value of the (- p 
In p) curve- This conclusion will be substantiated in Figures 3 which are presented below. It is to be 
noted that small differences in attacker and defender entropy predominate in the normalized case, as 
shown in Figures 2, where histograms for &i, &i', and of are displayed. 

The predictions were better for battles after about 1850. Some of the early combatderived data 
reflected selections from the Wilderness Campaign on the then United States frontier. Three bad 
predictions come from data of single year, 1781. A talk with Helmbold suggested that these particular 
sets of data may be unreliable. All 59 values of unnormalized H; were plotted as a function of Ci/Ni 
for the attacking and defending forces (Figures 3a and b). While it is not remarkable that the points fall 
along the line (because H; is derived from Ci/Ni), their distribution is. For the attacker in Figure 3a 
nearly all points fall between zero and 0.4, or about where conventional military wisdom predicts that 
the loser ceases to be a fighting force. For the defender in Figure 3b the story is told by the number of 
points located past the peak 

li 

91 
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Figure 2b.

 

Figure 2c.

Figures 2. Histograms of the normalized quantity &i = (I-Id - Ha) (Figure 2a) the 
un-normalized quantity bi' = (Hd - Ha) (Figure 2b) and the unnormalized quantity 
o; = (Zd - Za) (Figure 2c) from Tables 2a, 2b, and 2c, respectively. 
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Figure 3a.

Figure 3b.

Figures 3: Distribution of entropy for 59 historical battles along the curve given by (p 
In p) for the attacker (Figure 3a) and defender (Figure 3b).
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We now turn to a consideration of the time series data which is expected to be more sensitive to 

the hypothesis that entropy can serve as a predictor of combat outcomes. It is also the data from 
which we could hope to extract a command and control predictor. 
THE NATIONAL TRAINING CENTER EXERCISE-DERIVED DATA 
The time series information from the National Training Center (NTC) and JANUS simulations 
thereof was analyzed in two ways. First, a normalized cumulative entropy calculation was performed 
in which the original number of attackers and defenders were used as the numerator in equation (2) 
for all incremental time periods, tj. Second, the entropy was computed for each successive time 
period using for Ni the remaining force strength at tj, which was divided into the casualties generated 
between tj and tj+1 The NTC data is summarized in Figures 4 and 5. These figures each present plots 
consisting of Ha and Hd versus tune, and the two entropies versus each other in a form of phase 
portrait (which we have called the Entropic Space) for cumulative and time-interval sensitive 
computations, respectively. 

The most striking feature of the preceding plots is to be found in Figure 5a, which is generated 
from time-interval data, where at time 330 the attacker's entropy rises suddenly and then falls. In 
Figure 4a the total entropy comparisons tell the same tale. These results can be interpreted as the 
attacker taking the initiative, and associated risk- The risk pays off for the attacker's time interval 
entropy again declines while that of the defender remains high. Figures 4b and 5b show the clear 
evidence of a win by the attacker as the trajectory in Figure 4b curves back after the initiative is taken-
Points have been numbered in time ordered sequence. Plots of entropy versus entropy have been 
arbitrarily normalized to the peak of curve in equation (1) by dividing by 0.37. We tray generalize the 
results from the Hd versus I la plots by looking at the different notional trajectories for the "arrow of 
time" in Figures 6a and bb. 

 

Figure 4a: Plots of NTC 30-minute cumulative data for attacker (Ha) and defender 
(lid) entropy, and their difference (Ha - Hd) as functions of time.
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Figure 4b: Plots of NTC 30-minute cumulative data for simultaneous attacker (Ha) 
and defender (Hd) entropies each normalized by dividing by 0.37. 

 

Figure 5a: Plots of NTC 30-minute cumulative data for attacker (Ha) and defender 
(lid) entropy, and their difference (Ha - Hd) as functions of time. 



 

 

Figure 5b: Plots of NTC 30-minute cumulative data for simultaneous attacker (Ha) 
and defender (Hd) entropies each normalized by dividing by 0.37. 

For comparison we have computed entropy values for data derived from three JANUS 
simulations, arbitrarily numbered one, three, and six. In one case (six) the defender is the clear winner, 
while in four the attacker is the clearcut winner. Shown for each instance are plots of entropy as a 
function of time for both cumulative and time interval cases- For each case both cumulative and 
time-interval plots are presented plus the entropic space (H-d versus Ha) are presented (JANUS 1 _ 
Figures 7a, b, and c; JANUS 3: Figures 8a, b, and c; 1 ANUS 6: Figures 9a, b, and c)_ 

Other JANUS runs showed more complex behavior with all exhibiting a persistence of the 
engagement beyond normal break-off described in the figures presented in this chapter. It is as if the 
simulations "didn't know" when to quit This persistence may be due to the imposed structure of the 
computer code and the absence of a formal structure for force dissolution and combat termination. 

Additional searches for a signature that a side was winning or losing based on entropy were also 
performed. In Figure 10, for example, we show a three dimensional scatter plot of entropy for attack 
and defense versus time for NTC/30 minute data and for JANUS 4 produced with the aid of a 
computer routine that rotates multi -dimensional data. The orientations of the three axes result from 
experimenting with rotations that would separate the points in a three-dimensional projection onto a 
two-dimensional plane. This approach was also used to produce the results displayed in Figures 13. 

Use of three-dimensional graphical displays of combat-related entropies makes it possible to 
identify related episodes of combat activity since such episodes appear to form aggregates when 
plotted in sequence in three-dimensions. This technique will provide an insight into aspects of the 
entropic-structure of combat. 
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Figure 6a.

Figure 6b.
Figures 6: The "Arrows of Time" showing notional entropic space plots for an attacker 
victory (Figure 6a) and a defender victory (Figure 6b). 

WEST WALL AND INCHON COMBAT-DERIVED DATA 
Having analyzed data derived from the National Training Center, and related combat simulations, we 
now turn to an analysis of data derived from actual combat engagements: the West Wall campaign 
during World War II and the Inchon campaign during the Korean War. 

These campaigns lasted about one and three weeks respectively, and were characterized by troop 
concentrations in the ranges of some 20,000 to 50,000 men per side, and were a sharp departure from 
the very controlled combat examples just introduced Entropy was calculated on a daily basis using 
reinforced force strength figures when appropriate. Threedimensional plots of Hd versus Ha versus 
time are introduced because of the greater complexity of the combat trajectories in entropic space. 
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Figure 7a: Cumulative plot of JANUS 1 simulation of NTC data

 

Figure 7b: Time interval plot of JANUS 1 simulation of NTC data 
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Figure 7c: Entropic space plot of JAN-US 1 simulation of the NTC data 
Figures 7.= JANUS 1 simulation of the NTC data showing cumulative (Figure 7a), 
time interval (Figure 7b), and entropic space (Figure 7c) plots 

Figure 8a: Cumulative plot of JANUS 3 simulation of NTC data
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Figure 8b: Time interval plot of JANUS 3 simulation of NTC data

 

Figure 8c: Entropic space plot of JAN-US 3 simulation of NTC data 
Figures 8: JANUS 3 simulation of the NTC data showing cumulative (Figure 8a), time 
interval (Figure 8b), and entropic space (Figure 8c) plots. 
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Figure 9a: Cumulative plot of JANUS 6 simulation of NTC data -

 

Figure 9b: Time interval plot of JANUS 6 simulation of NTC data.
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Figure 9c: Entropic space plot of JANUS 6 simulation of NTC data 
Figures 9: JANUS 6 simulations of the NTC data showing cumulative (Figure 9a), 
time interval (Figure 9b), and entropic space (Figure 9c) plots 

Figure 10a: Three-dimensional plot of attacker (Ha) and defender (Hd) entropies 
vs. tune for NTC-30 minute data 

History records the Allies as victors in the West Wall and the Inchon campaign as wellHow well 
do our predictions bear up? Both time (Figure 11 a), entropic space plots (Figure I 1 b), and the 
three-dimensional time-ordered entropy plots (Figure 1 I c) for the West Wall show a victor after some 
undecided early, and unreinforced, action. In fact the process appeared from the data to be 
accelerating at the end- As yet we have no way to measure the velocity or acceleration in the 
production of entropy but it appears that it would be a very sensitive indicator of which way the battle 
was headed. It would also accord well with earlier comments on dissipative systems as evolutionary 
systems. Although we have no data, the time derivative of entropy dHi/dt yields the following results, 
where both 


